
DLLAccess
Word for Windows 2.0 macros

To demonstrate usage of DLLAcces.DLL

To

This document introduces the use of DLLAcces.DLL. DLLAcces.DLL is a set of very
simple DLL routines that allows you to Peek and Poke values into memory. It is most
useful to access data structure that are returned from other DLL or API calls, or to pass
data structures to those DLL or API calls.

!! WARNING !!

These routines are not for the novice! Use at your own risk!
If you pass the wrong parameters, you can crash WinWord!

Save Often!

The idea is that you've got a pointer to a structure. If you know what the structure is, you
can figure out where each field of the structure is. You just pass the pointer and the
location of the field inside the structure to the DLLAcces.DLL routines to get or set the
field. Simple. But you better make sure your offset calculations are correct!

Here are the standard sizes of some data types:

Data Type Number of Bytes

Integer 2

Long 4

Float 4

Double 8

LPSTR 4

LPCSTR 4

Artemis Associates & Pinecliffe InternationalPage 1

DLLAccess

LPanything 4

WORD 2

DWORD 4

Handle 2

HWND 2

HINSTANCE 2

UINT 2

If the structure has the following definition:

typedef struct myStructTag {
DWORD lStructSize;
HWND hWnd;
LPSTR lpStr;
DWORD nMaxStr;

} myStruct;

Then the structure's overall size is 14 (4 + 2 + 4 + 4), and the following offsets are true:

lStructSize 0
hWnd 4
lpStr 6
nMaxStr 10

For most structures in Windows, the first element in the passed structure is the size of the
structure, so you'd set lStructSize to 14 with a call like:

r = DA_SetLong(lpStruct, 0, 14)

Now comes the question of how to create the structure in the first place so that you can
pass it to an API or DLL function. Well, we've provided two routines for accessing
global memory—AllocVariable and FreeVariable. These routines must be used in

Artemis Associates & Pinecliffe InternationalPage 2

DLLAccess

pairs, or you'll lose memory!!

The calling convention goes like:

hStruct = 0 : lpStruct = AllocVariable(lStructSize, hStruct)

......use lpMem as the pointer to memory

FreeVariable(hStruct)

The hStruct is a handle to the memory that must be used to free the memory. It's
returned by AllocVariable, but you have to make sure that hStruct exists before the call.
lpStruct is the actual pointer that you'd use.

Look at the CommDlgExample to see how everything fits. It calls the
GetOpenFileName routine. It sets up filters for files, and changes the title of the dialog
box, etc. When it returns, a dialog box displays the filename, its path, and the extension

Save everything before running this example!.....just in case......

Double-click

To use DLLAcces.DLL, copy the DLL to your WINDOWS/SYSTEM directory. The
following sections gives the declare statements, and explanations how they're used.

Integer Functions

Declare Function DA_GetInt Lib "dllacces.dll"(lpstruct As Long, offset As Integer)
As Integer

Declare Function DA_SetInt Lib "dllacces.dll"(lpstruct As Long, offset As Integer,
value As Integer) As Integer

These functions get and set integer values. lpstruct is the pointer to the structure, and
offset is the location in the structure that the integer comes from or is to go. For
DA_SetInt, value is the new value to set.

Here's how you use them:

intval = DA_GetInt(lpStruct, offset)

r = DA_SetInt(lpStruct, offset, newintval)

DA_SetInt always returns 0.

Artemis Associates & Pinecliffe InternationalPage 3

DLLAccess

Long Functions

Declare Function DA_GetLong Lib "dllacces.dll"(lpstruct As Long, offset As
Integer) As Long

Declare Function DA_SetLong Lib "dllacces.dll"(lpstruct As Long, offset As
Integer, value As Long) As Integer

These functions get and set Long integer values. lpstruct is the pointer to the structure,
and offset is the location in the structure that the Long integer comes from or is to go.
For DA_SetLong, value is the new value to set.

Here's how you use them:

longval = DA_GetLong(lpStruct, offset)

r = DA_SetLong(lpStruct, offset, newlongval)

DA_SetLong always returns 0.

Float Functions

Declare Function DA_GetFloat Lib "dllacces.dll"(lpstruct As Long, offset As
Integer) As Double

Declare Function DA_SetFloat Lib "dllacces.dll"(lpstruct As Long, offset As
Integer, reverse As Integer, value As Double) As Integer

These functions get and set Float values. lpstruct is the pointer to the structure, and
offset is the location in the structure that the Float comes from or is to go. For
DA_SetFloat, value is the new value to set. Note how DA_GetFloat returns Double
and the value parameter in DA_SetFloat is declared as Double. That's because
WordBasic does not have a Float type.

There's an additional argument called reverse. That's to fix a bug in WordBasic. As it
turns out, WordBasic passes Doubles incorrectly. Setting reverse to 1 fixes this
problem. This makes DLLAcces.DLL useful for other applications, and also if and
when Microsoft fixes the bug; all you have to do is to change reverse to 0.

Here's how you use these functions:

floatval = DA_GetFloat(lpStruct, offset)

Artemis Associates & Pinecliffe InternationalPage 4

DLLAccess

r = DA_SetFloat(lpStruct, offset, 1, newfloatval)

DA_SetFloat always returns 0.

Double Functions

Declare Function DA_GetDouble Lib "dllacces.dll"(lpstruct As Long, offset As
Integer) As Double

Declare Function DA_SetDouble Lib "dllacces.dll"(lpstruct As Long, offset As
Integer, reverse As Integer, value As Double) As Integer

These functions get and set Double values. lpstruct is the pointer to the structure, and
offset is the location in the structure that the Double comes from or is to go. For
DA_SetDouble, value is the new value to set.

There's an additional argument called reverse. That's to fix a bug in WordBasic. As it
turns out, WordBasic passes Doubles incorrectly. Setting reverse to 1 fixes this
problem. This makes DLLAcces.DLL useful for other applications, and also if and
when Microsoft fixes the bug; all you have to do is to change reverse to 0.

Here's how you use these functions:

dblval = DA_GetDouble(lpStruct, offset)

r = DA_SetDouble(lpStruct, offset, 1, newdblval)

DA_SetDouble always returns 0.

String Functions

Declare Function DA_GetString$ Lib "dllacces.dll"(lpstruct As Long, offset As
Integer)

Declare Function DA_SetString Lib "dllacces.dll"(lpstruct As Long, offset As
Integer, value$) As Integer

DA_GetString$ returns a string from the given offset. Pretty self-explanatory.

DA_SetString has questionable value. DLLAcces.DLL creates a copy of the input
string and sets the structure field to point at the copy. The problem is that you can't free
that memory. If, on the other hand, DA_SetString just sets the pointer, there's no

Artemis Associates & Pinecliffe InternationalPage 5

DLLAccess

guarantee that the string in WinWord will stick around. At least I couldn't get consistent
behavior.

Here's a better way of creating a string to pass to a structure:

Declare Function lstrcpy3 Lib "Kernel"(lp As Long, lpString2$) As Long Alias
"lstrcpy"

Sub MAIN
hStr = 0 : lpStr = AllocVariable(256, hStr)
lp = lstrcpy3(lpStr, "This is a string to set.")
r = DA_SetLong(lpStruct, offset, lpStr)
....

Bye:
FreeVariable(hStr)

End Sub

By the way, this is also how you can pass pointers to integers, longs, doubles, etc.

Function Pointers

Declare Function DA_GetFUNCPTR Lib "dllacces.dll"(lpstruct As Long, offset As
Integer) As Long

Declare Sub DA_ExecVoidFUNCPTR Lib "dllacces.dll"(fnc As Long)

Declare Function DA_ExecIntFUNCPTR Lib "dllacces.dll"(fnc As Long) As
Integer

Declare Function DA_ExecLongFUNCPTR Lib "dllacces.dll"(fnc As Long) As
Long

These functions deal with pointers to functions. If a structure gives you a pointer to
function, you can get it with DA_GetFUNCPTR. You can execute it with the other
calls. Which one you use will depend upon whether that function returns a value, and
what type it returns.

There's no way to really set a CallBack function to a macro, so DA_SetFUNCPTR is not
supported. (You can use DA_SetLong to get the same results if you already have the
function pointer.)

Licensing

Artemis Associates & Pinecliffe InternationalPage 6

DLLAccess

If you're an in-house or commercial developer, we want to encourage you to use the
DLLAcces.DLL routines. The licensing rules are quite simple.

An individual who owns DLLAcces.DLL may use the routines on their own computer(s)
any way they like.

A company or organization using the routines internally must have a DLLAcces.DLL
site license. If you distribute a WordBasic program using a DLLAcces.DLL Library
routine to, say, 100 internal users, you should have a DLLAcces.DLL site license for
100 users. Site licenses are available by writing to:

Artemis Associates
3083 Rasmus Circle

San Jose, CA 95148-3140

If you want to distribute DLLAcces.DLL as part of a commercial package, there's a
small licensing fee.

Disclaimer

Obviously, we can't guarantee that these routines are going to work in every situation.
You'll have to try them and use your judgment to see if they'll work for you. The sample
code contains suggestions, tips, warnings and the like, and you should take a close look
at what's being said. It's worth repeating the warning here:

!! WARNING !!

These routines are not for the novice! Use at your own risk!
If you pass the wrong parameters, you can crash WinWord!

Save Often!

If you distribute code, be sure to test on as many platforms as possible!

We can promise two things: if you have a problem, we'll work hard to get it solved; and
if you're ever dissatisfied with the DLLAcces.DLL Library, for any reason, our 100%
no-questions-asked lifetime moneyback guarantee applies. Period.

Artemis Associates & Pinecliffe InternationalPage 7

DLLAccess

DLLAccess
Copyright © 1993 Artemis Associates

and Pinecliffe International
Post Office Drawer 7337

Coal Creek Canyon
Golden, Colorado USA 80403-0100

Artemis Associates & Pinecliffe InternationalPage 8

	typedef struct myStructTag {
	DWORD lStructSize;
	HWND hWnd;
	LPSTR lpStr;
	DWORD nMaxStr;
	} myStruct;
	lStructSize 0
	hWnd 4
	lpStr 6
	nMaxStr 10
	r = DA_SetLong(lpStruct, 0, 14)
	hStruct = 0 : lpStruct = AllocVariable(lStructSize, hStruct)
use lpMem as the pointer to memory
	FreeVariable(hStruct)
	Integer Functions
	Declare Function DA_GetInt Lib "dllacces.dll"(lpstruct As Long, offset As Integer) As Integer
	Declare Function DA_SetInt Lib "dllacces.dll"(lpstruct As Long, offset As Integer, value As Integer) As Integer
	intval = DA_GetInt(lpStruct, offset)
	r = DA_SetInt(lpStruct, offset, newintval)

	Long Functions
	Declare Function DA_GetLong Lib "dllacces.dll"(lpstruct As Long, offset As Integer) As Long
	Declare Function DA_SetLong Lib "dllacces.dll"(lpstruct As Long, offset As Integer, value As Long) As Integer
	longval = DA_GetLong(lpStruct, offset)
	r = DA_SetLong(lpStruct, offset, newlongval)

	Float Functions
	Declare Function DA_GetFloat Lib "dllacces.dll"(lpstruct As Long, offset As Integer) As Double
	Declare Function DA_SetFloat Lib "dllacces.dll"(lpstruct As Long, offset As Integer, reverse As Integer, value As Double) As Integer
	floatval = DA_GetFloat(lpStruct, offset)
	r = DA_SetFloat(lpStruct, offset, 1, newfloatval)

	Double Functions
	Declare Function DA_GetDouble Lib "dllacces.dll"(lpstruct As Long, offset As Integer) As Double
	Declare Function DA_SetDouble Lib "dllacces.dll"(lpstruct As Long, offset As Integer, reverse As Integer, value As Double) As Integer
	dblval = DA_GetDouble(lpStruct, offset)
	r = DA_SetDouble(lpStruct, offset, 1, newdblval)

	String Functions
	Declare Function DA_GetString$ Lib "dllacces.dll"(lpstruct As Long, offset As Integer)
	Declare Function DA_SetString Lib "dllacces.dll"(lpstruct As Long, offset As Integer, value$) As Integer
	Declare Function lstrcpy3 Lib "Kernel"(lp As Long, lpString2$) As Long Alias "lstrcpy"
	Sub MAIN
	hStr = 0 : lpStr = AllocVariable(256, hStr)
	lp = lstrcpy3(lpStr, "This is a string to set.")
	r = DA_SetLong(lpStruct, offset, lpStr)

	Bye:
	FreeVariable(hStr)
	End Sub

	Function Pointers
	Declare Function DA_GetFUNCPTR Lib "dllacces.dll"(lpstruct As Long, offset As Integer) As Long
	Declare Sub DA_ExecVoidFUNCPTR Lib "dllacces.dll"(fnc As Long)
	Declare Function DA_ExecIntFUNCPTR Lib "dllacces.dll"(fnc As Long) As Integer
	Declare Function DA_ExecLongFUNCPTR Lib "dllacces.dll"(fnc As Long) As Long

	Licensing

